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Lecture 24

Integrator Design

TA-C  Integrators

Other Integrator Structures



Integrator Characteristics of Interest
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Properties of an ideal integrator:

Gain decreases with 1/ω

Phase is a constant -90o

( )0I Ij  = 1

How important is it that an integrator have all 3 of these properties?

Review from last time



Some integrator structures
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There are many different ways to build an inverting integrator

There are other useful integrator structures (some will be introduced later)

Review from last time



Integrator-Based Filter Design
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Are new integrators still being invented?

Review from last time



Oct 16 2018

Nov 2016

Nov 2017

Review from last time



Example – Active RC Feedback Tow Thomas Biquad
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Example – OTA-C Tow Thomas Biquad
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Basic Integrator Functionality
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• An inverting/noninverting integrator pair define a family of integrators

• All integrator functional types can usually be obtained from the 

inverting/noninverting integrator pair

• Suffices to focus primarily on the design of the inverting/noninverting 

integrator pair since properties of class primarily determined by 

properties of integrator pair



Example – Basic Op-Amp Feedback Integrator Family
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Example – Basic Op-Amp Feedback Integrator Family
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Example – Basic Op-Amp Feedback Integrator
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Example – Basic Op-Amp Feedback Integrator Family
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Example – Basic Op-Amp Feedback Integrator Family
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Note distinction between fully balanced and fully differential structures !



Integrator Types
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Will consider first the Voltage Mode type of integrators



Voltage Mode Integrators

• Active RC     (Feedback-based)

• MOSFET-C   (Feedback-based)

• OTA-C

• TA-C

• Switched Capacitor

• Switched Resistor

Sometimes termed “current mode”

• Other Continuous-time Structures

Discrete Time



Active RC Voltage Mode Integrator
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• Limited to low frequencies because of Op Amp limitations

• No good resistors for monolithic implementations
Area for passive resistors is too large at low frequencies

Some recent work by Haibo Fei shows promise for some audio frequency applications

• Capacitor area too large at low frequencies for monolithic implementatins

• Active devices are highly temperature dependent, proc. dependent, and nonlinear

• No practical tuning or trimming scheme for integrated applications with passive resistors



Voltage Mode Integrators

• Active RC     (Feedback-based)

• MOSFET-C   (Feedback-based)

• OTA-C

• TA-C

• Switched Capacitor

• Switched Resistor

Sometimes termed “current mode”

• Other Continuous-time Structures

Discrete Time



MOSFET-C Voltage Mode Integrator

• Limited to low frequencies because of Op Amp limitations

• Area for RMOS is manageable !

• Active devices are highly temperature dependent, process dependent

• Potential for tuning with VC

• Highly Nonlinear (can be partially compensated with cross-coupled input
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MOSFET-C Voltage Mode Integrator

• Improved Linearity 

• Some challenges for implementing VC
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Voltage Mode Integrators

• Active RC     (Feedback-based)

• MOSFET-C   (Feedback-based)

• OTA-C

• TA-C

• Switched Capacitor

• Switched Resistor

Sometimes termed “current mode”

• Other Continuous-time Structures

Discrete Time



OTA-C Voltage Mode Integrator

• Requires only two components

• Inverting and Noninverting structures of same complexity

• Good high-frequency performance

• Small area

• Linearity is limited (no feedback in integrator)

• Susceptible to process and temperature variations

• Tuning control can be readily added 

Widely used in high frequency applications 

NoninvertingInverting

V O U T

V IN

C

gm

=
m

O U T IN

g
V V

sC

VOUT
VIN

C

gm

= −
m

O U T IN

g
V V

sC



OTA-C Voltage Mode Integrator

Programmable Integrator
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OTA-C Voltage Mode Integrator

Lossy  Integrator
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OTA-C Voltage Mode Integrator

EQ mg = g

OTA is generally much smaller than a resistor
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OTA-C Voltage Mode Integrator

Lossy  Integrator
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OTA-C Voltage Mode Integrator

Summing  Integrator

• Inverting and noninverting functions can be combined in single summer

• All transconductance gains can be programmable
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OTA Architecture

Mid-complexity OTA• M1 and M2 matched

• M2 and M4 matched

• Define M to be the gain of the current mirror formed with M2 and M4

• gm programmable with VBIAS
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Other OTAs exist, considerable effort expended over past two decades on OTA design



Voltage Mode Integrators

• Active RC     (Feedback-based)

• MOSFET-C   (Feedback-based)

• OTA-C

• TA-C

• Switched Capacitor

• Switched Resistor

Sometimes termed “current mode”

• Other Continuous-time Structures

Discrete Time



TA-C Voltage Mode Integrator

• Can operate at very high frequencies

• Low device count circuit

• Simplicity is important for operating at very high frequencies

• I0 is process and temperature dependent

• Linearity is limited 
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TA-C Voltage Mode Integrator
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TA-C Voltage Mode Integrator

Can  be viewed either as n-channel input with current mirror or as 

low-gain inverter driving a p-channel input inverting integrator  
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TA-C Voltage Mode Integrator
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TA-C Voltage Mode Integrator
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Voltage Mode Integrators

• Active RC     (Feedback-based)

• MOSFET-C   (Feedback-based)

• OTA-C

• TA-C

• Switched Capacitor

• Switched Resistor

Sometimes termed “current mode”

• Other Continuous-time Structures

Discrete Time



Another Voltage Mode Integrator
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• Infinite input impedance (in contrast to basic Active RC Integrator)

• Both R and C have one terminal grounded

• Requires integrated process

• Accuracy limited by process and temperature

• Size limitations same as basic Active RC Integrator

• Limited to lower frequencies because of Op Amp

• Good linearity

M1

C

VOUT

VIN

IB

R



Another Voltage Mode Integrator
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Another Voltage Mode Integrator
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• M1 in triode region

• Reduces Area Concerns but Loss of Linearity

• I0 is programmable with VRR

• Accurate control of IB critical



Regulated Cascode Voltage Mode Integrator

Inverting Integrator
Noninverting Integrator
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• M1 operating in triode region

• RFET programmable with VRR

• Very good linearity properties

• Input impedance still infinite

gMT is triode region transconductance of M1



Regulated Cascode Voltage Mode Integrator
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Regulated Cascode Voltage Mode Integrator

Inverting Integrator
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• Multiple inputs require single additional transistor

• Accurate ratioing of gains practical

• Can also sum currents on C
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Regulated Cascode Voltage Mode Integrator

Inverting Integrator
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Stay Safe and Stay Healthy !



End of Lecture 24


